Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging.
نویسندگان
چکیده
Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 10(10) M(-1) cm(-1). This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grüneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10(-13) M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging.
منابع مشابه
Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography
Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...
متن کاملVisualization of Protease Activity In Vivo Using an Activatable Photo-Acoustic Imaging Probe Based on CuS Nanoparticles
Herein, we for the first time report a novel activatable photoacoustic (PA) imaging nano-probe for in vivo detection of cancer-related matrix metalloproteinases (MMPs). A black hole quencher 3 (BHQ3) which absorbs red light is conjugated to near-infrared (NIR)-absorbing copper sulfide (CuS) nanoparticles via a MMP-cleavable peptide linker. The obtained CuS-peptide-BHQ3 (CPQ) nano-probe exhibits...
متن کاملHydrothermal synthesis of photo-catalyst and photo-luminescence polymer-CdS flexible nanocomposites
CdS nanoparticles are II-VI group semiconductor in nature with suitable band gap for photoluminescence and photo-catalyst applications. CdS nanostructures were synthesized via a facile precipitation method in the presence of green capping agents such as starch, glucose, gelatin, salicylic acid in the green solvent of water. The influence of concentration, surfactant, precipitating agent on the ...
متن کاملUpconverting Organic Dye Doped Core-Shell Nano-Composites for Dual-Modality NIR Imaging and Photo-Thermal Therapy
Nanotechnology approaches offer the potential for creating new optical imaging agents with unique properties that enable uses such as combined molecular imaging and photo-thermal therapy. Ideal preparations should fluoresce in the near-infrared (NIR) region to ensure maximal tissue penetration depth along with minimal scattering and light absorption. Due to their unique photophysical properties...
متن کاملCharacterization of CaSn(OH)6 and CaSnO3 Nanostructures Synthesized by a New Precursor
In this paper, calcium stannate nanoparticles were synthesized by a fast and simple co-precipitation procedure. For CaSnO3 preparation ammonia was used as precipitation agent. The effect of various surfactants such as cationic, anionic and neutral on the morphology of the products was investigated. By changing in Ca(Sal)2 as a new precursor different morphologies were obtained. Ligand as a capp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2015